Dynamic Spike Super-resolution and Applications to Ultrafast Ultrasound Imaging
نویسندگان
چکیده
We consider the dynamical super-resolution problem consisting in the recovery of positions and velocities of moving particles from low-frequency static measurements taken over multiple time steps. The standard approach to this issue is a two-step process: first, at each time step some static reconstruction method is applied to locate the positions of the particles with super-resolution and, second, some tracking technique is applied to obtain the velocities. In this paper we propose a fully dynamical method based on a phase-space lifting of the positions and the velocities of the particles, which are simultaneously reconstructed with superresolution. We provide a rigorous mathematical analysis of the recovery problem, both for the noiseless case and in presence of noise. Several numerical simulations illustrate and validate our method, which shows some advantage over existing techniques. We then discuss the application of this approach to the dynamical super-resolution problem in ultrafast ultrasound imaging: blood vessels’ locations and blood flow velocities are recovered with super-resolution.
منابع مشابه
3 D ultrafast ultrasound imaging in vivo
Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, noninvasively and in real time. In this study, we present the first implementation of Ultrafast...
متن کاملRobust Fuzzy Content Based Regularization Technique in Super Resolution Imaging
Super-resolution (SR) aims to overcome the ill-posed conditions of image acquisition. SR facilitates scene recognition from low-resolution image(s). Generally assumes that high and low resolution images share similar intrinsic geometries. Various approaches have tried to aggregate the informative details of multiple low-resolution images into a high-resolution one. In this paper, we present a n...
متن کاملMultiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging.
Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even mo...
متن کاملMathematical Analysis of Ultrafast Ultrasound Imaging
This paper provides a mathematical analysis of ultrafast ultrasound imaging. This newly emerging modality for biomedical imaging uses plane waves instead of focused waves in order to achieve very high frame rates. We derive the point spread function of the system in the Born approximation for wave propagation and study its properties. We consider dynamic data for blood flow imaging, and introdu...
متن کامل3D ultrafast ultrasound imaging in vivo.
Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafas...
متن کامل